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We perform a two-dimensional analytical stability analysis of a viscous, unbounded
plane Couette flow perturbed by a finite-amplitude defect and generalize the results
obtained in the inviseid limit by Lerner and Knobloch. The dispersion relation is
derived and is used to establish the condition of marginal stability, as well as the
growth rates at different Reynolds numbers. We confirm that instability occurs at
wavenumbers of the order of ¢, the non-dimensional amplitude of the defect. For
large enough R (R being the Reynolds number based on the width of the defect), the
maximum growth rate is about e, at approximately half the critical wavenumber.
We formulate the instability conditions in the case where the flow has a finite
extension in the downstream direction. Instability appears when ¢ is greater than
R33, where R, is the Reynolds number based on the downstream scale, and when the
ratio of the defect width to the downstream scale lies in the interval [(eR,)7}, €].

1. Introduction

Shear flows are of major interest in many astrophysical and geophysical situations
because of the various instabilities they are likely to undergo, which may lead to
turbulence and thus to enhanced transport. Despite their apparent simplicity, these
flows often exhibit complex behaviour which is not fully understood ; many of them
are known to be unstable with respect to finite-amplitude perturbations under
conditions where the linear theory predicts stability.

Various techniques have been applied, with more or less success, to investigate
such finite-amplitude instabilities, but they have failed so far with the plane Couette
flow : a plane parallel stream of constant shear (i.e. of constant vorticity). One reason
is that this flow has no linear instability from which one could start to explore the
nonlinear regime, as was done for instance by Zahn et al. (1974) when dealing with
plane Poiseuille flow. A step forward was made recently by Lerner & Knobloch (1988,
hereinafter referred to as LLK) who studied the influence of a small defect in an
inviscid Couette flow on the onset of instability. The defect is chosen in such a way
that the profile of the flow, originally purely linear, presents a local maximum of
vorticity and thus satisfies the Rayleigh—Fjorteft necessary condition for instability.
It is then possible to perform a linear analysis of the stability of the resulting flow,
given the scaled amplitude ¢ of the defect. The main result of this analysis is the
existence of a long-wave instability, with the critical (downstream) wavenumber k,
of order ¢; the corresponding solutions have a growth rate of order e.
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More recently, Nagata (1990) produced for the first time some evidence of the
existence of three-dimensional finite-amplitude solutions in plane Couette flow.
These solutions are expressed as truncated modal expansions; they are obtained
numerically by extending the bifurcation problem of a circular Couette system
between corotating cylinders with a narrow gap to the case with zero average
rotation. The critical Reynolds number for the appearance of those finite-amplitude
solutions is found to be of the order of 1000.

In contrast to Nagata, we are interested in the behaviour at large Reynolds
numbers, which are more relevant to geophysical and astrophysical flows. For the
same reason, we shall deal with an unbounded Couette flow. The purpose of this
paper is therefore to extend LKs work in the two-dimensional case by including
viscous dissipation, in order to estimate the instability threshold in terms of the
Reynolds number characterizing the flow. Obviously, viscosity will have a stabilizing
effect by smoothing the original defect, therefore suppressing the very source of the
instability. For instability to occur, one must thus require the growth rate of the
instability (O(e)) to be greater than the viscous damping rate associated with the
defect, which is (O(1/R)) (R being the Reynolds number of the flow, based on the size
of the defect). In other words, the amplitude of the perturbation, measured as the
relative increase of vorticity, must be at least of the order of 1/R to allow the
instability.

But this condition may not be sufficient, since viscosity will also operate on the
two-dimensional perturbation imposed on the mean flow. It remains to be checked
whether the viscous decay of the perturbation will not be faster than that of the
defect, as would be the case if the perturbation develops scales that are shorter than
the width of the defect. To rule out this possibility, we shall solve the linear stability
problem, including viscous dissipation. We shall assume that the decay rate of the
defect can be neglected compared with the growth rate of the linear mode, and we
shall check afterwards the validity of that assumption.

2. Derivation of the dispersion relation
2.1. The model

We examine the stability of a two-dimensional, incompressible, plane-parallel shear
flow, with velocity of the form U = (U(Y ;¢), 0), where ¢ indicates the non-dimensional
amplitude of the defect and (X, Y) are the coordinates parallel and transverse to the
shear. The flow is unbounded in the Y-direction, both for simplicity and to avoid any
effect of the boundaries on the instability. The model we are going to use is a discrete
profile which is continuous but which contains discontinuities in its first derivative
(Model B of LK). This choice is motivated by the fact that this problem can be solved
by elementary methods (Drazin & Reid 1981). Furthermore, LKs careful analysis
showed that results obtained with this kind of profile remain qualitatively and even
quantitatively true for similar but smooth, continuous profiles.
The profile of the flow is thus taken to be, in non-dimensional variables:

y—e if y < —1 (region I});
u(y;e) = (1+€)y —1<y <1 (region II); (1)
2 1 (region III}).

The unit of length is the width d of the defect, and the unit of time is the inverse of
the shearing rate dU/dY in the unperturbed flow (regions I and III).

y+e ify
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2.2. The perturbation equation

As usual when dealing with plane-parallel flows, we factorize the stream function of
the perturbation as

¥ = Re{¢(y)exp[ik(x—ct)]};
the function ¢ then satisfies the Orr—Sommerfeld equation (see Drazin & Reid 1981):

ik[(u—c) Lop—u"¢] = —$2¢, where $=%— (2)

R is the Reynolds number of the perturbed flow based on the width d of the defect:

_du d2
dY v’

k is the wavenumber of the perturbation in the flow direction and c is its phase
velocity. This equation, completed with the boundary conditions for an unbounded
flow

#(+0)=0

constitutes an eigenvalue problem for the (complex) phase speed c(k, €). Its solution
can be found by solving (2) in each of the regions I, IT and III, and then applying
some jump conditions on ¢ across y = +1 to establish the dispersion relation for c.
Drazin (1961) showed that these jump conditions are

1

708 =0, \
L [o¢]

EA -@] - 0,

—I-Ai-}-kR —_
kR oy T V| =

3
1Aa¢

These conditions are valid for any kR: in the limit kR — 00, one retrieves the classical
inviscid jump conditions.

2.3. Simplification of the problem

If one proceeds as just stated, one has to calculate an 8 x 8 determinant, which is a
formidable task even in the limit of small ¥ and 1/R. Fortunately, it is possible to
simplify the problem by looking only for symmetric solutions.

The flow profile (1) being antisymmetric, we observe that (2) is invariant under the
transformation y >—y, c>—c* and ¢ > ¢* (Tatsumi & Gotoh 1960). It has been
established by Pekeris (1936) that for such a profile the most unstable (or the least
stable) solution is unique, and therefore has a zero phase velocity (¢ = —c*) and is
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symmetric (¢(y) = ¢*(—y)). This property holds to leading order in (kR)™'. For
higher kR, the symmetry is broken and solutions appear that have non-zero phase
velocities. Since we are seeking the most unstable modes, we shall assume from now
on that the solution is indeed symmetric, which reduces the problem to the
computation of a 4 x 4 determinant.

2.4. Solving the problem

The second derivative of u being zero, the Orr-Sommerfeld equation can be put in
a very simple form. If in cach domain we let

n(y) = Uy —c B = (ikRu') with php=—1n,

(2) becomes [B(D?—k*) —9)(D*—k?) ¢ = 0,

where D stands for d/dy. Note that the variable % is now also discontinuous. We have
the following limits:

—l+e—c
lim 9(y) =—1+¢—c and lim gy)=——,
y—-—1" y—>—1+ 1+€
. (4)
+e—c
lim9(y) =14+e—c and lim9(y) =
y-1* yo1- 1+e¢
The boundary conditions are now
¢(n) = Dg(n) =0 when [y ->co. (5)
We solve (3) following the classical method (Mises 1921a, b; Hopf 1914). The
solutions of [f*(D*—k*)—9]F =0 are the Airy functions A4;(2)(j=1,2,3) of

argument z = ({+ k2ﬂ2 where ¢ =7n/p (their properties are summarized in the
Appendix). Therefore the solutions of (4) are linear combinations of exp (+ ky) and
of two particular solutions ¥; of the inhomogeneous equation (D*—k?)yr; =
BA,(L+ k*f?), which can be found by the method of variation of parameters:

1 (7 .
b =g || sinh k) A€+ a ©)
4

with 00, (j = 1,2, 3) being the path of integration tending to infinity in the sectors S;
deﬁned in the Appendlx Note that the scale of varlatlon of {; is that of the argument
of the Airy function, that is mainly g = (kR)™s

It remains to choose the solutions @(y) whlch satisfy ¢(9(—y)) = ¢*(n(y)) and the
boundary conditions (5) at infinity :

aexpky +3%,(n) for y<—1;
d(n) = { bcoshky+ibtan(y)sinhky+yW¥,(n) for —1<y<1; (7)
a*exp —ky+6*¥,(n) for y>21;

where a, § and y are complex numbers, while b and y are real.
Because of the symmetry properties of these functions, the jump conditions at
y =—1 and at y = 1 are complex conjugates of one another. We can then consider y
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as an arbitrary phase and impose the jump conditions only at y = —1 (say). This
procedure gives a relation between c, k and y. The dispersion relation is then obtained
by eliminating y between this relation and its complex conjugate and can be written:

4k%D,|? + (kRe)*(1 — e~ %) |kD, — D,|* — 4k*cR Im [(kD,—D,) D¥] = 0, (8)
where the D, are the following 2 x 2 determinants:

b _|F 4 —f4,) ' )
VAl — AN — kR )
v, — ¥y

D, = (L) ~3<§_>~ | o)
B4,8) —F*4,E)

L) W) |
ﬂ_4A2(€—) _ﬁ-‘lAa(g—) ’

where { = —(1+¢€+ic)/p, £ =¢/(1+e)fand f = (1+¢€p. It can be checked that
in the limit kR — oo, this dispersion relation reduces to the inviscid one obtained by
LK.

The dispersion equation (8) depends on four parameters, namely k, R, € and ¢;. It
is therefore almost impossible to explore the whole range of parameters, and so we
shall confine our domain of exploration to wavenumbers of order ¢, where LK located
the inviscid instability. It is then convenient to express all quantities in terms of
the‘ natural variables’ & = k/¢ and B = eR which are both of order unity. In the limit
of small ¢, all the functions involved in the determinants can be expanded in power
of €. Keeping only leading orders in ¢ and turning back to our original variables, we
thus obtain the following dispersion relation:

D, =

k 1
£ re(3m0)), (10)
where {_ = —(1+e€+ic,)/f and f = (kR)#e%and B, is a complex function whose

definition and properties are given in the Appendix. The dispersion relation given by
(10) can be studied both analytically and numerically. The results are presented in
the following section.

3. Results
3.1. Marginal stability

The curve of marginal stability k., (w = 0) = f[eR] has been computed numerically.
The result is given in figure 1. In both limits eR -0 and eR — o0, its analytical form
can be found using the properties of the function B, which are provided in the
Appendix. This gives
k.~e when eR»oo;‘l
(11)
k. ~ e[B,(0) sin 3m)eR) when eR—0, ]

with B,(0) ~ 1.1. The value reached in the eR - oo limit is hardly surprising: it is the
result obtained by LK in the inviscid case.
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Fieure 1. Curve of marginal stability.
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Ficurk 2. Maximal growth rate w/e versus Reynolds number eR.

3.2. Maximum growth rate

The maximum growth rate w,,/€¢ has been computed for several values of the
rescaled Reynolds number eR. The result is displayed in figure 2. Let us recall that
our analysis is valid only for e® » 1, which guarantees that the defect will last long
enough for the perturbation to develop. In the inviscid limit ¢R — o0, the maximum
growth rate tends to 1, as expected from the results of LK. It is quite insensitive to
the strength of the viscosity : even for values of eR as small as 0.1, w,,, /€ is still 0.44.
However, the value k =k, at which this maximum growth rate occurs decreases
from 0.5¢ (inviscid limit) to O (infinite viscosity limit). The critical wavenumber &,
exhibits a similar decrease.
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F1cURE 3. Growth rate w/e versus wavenumber k/¢ at different Reynolds numbers: eR = 0.01
(circles); eR = 1 (triangles); eR = 50 (squares).

eR wmax/e kmnx/e kc/ze
0.1000000 0.4444663 7.9999998 x 1072 0.1514543
0.5680000 0.4654000 0.2000000 0.2787105
1.000000 0.4722691 0.2400000 0.3247618
4.960 000 0.4888077 0.3600000 0.4352087
8.920 000 0.4929987 0.4000000 0.4612517
50.50000 0.4988920 4.4800000 0.4950908

TaBLE 1. Maximum growth rate, wavenumber at which it occurs, and critical wavenumber, versus
Reynolds number

Some numerical results are given in table 1. For reference, we also give in figure
3 the curve w/e = f(k/¢) for different eR. Those curves illustrate the influence of
viscosity on the growth rate, the case eR = 50 (squares) corresponding to almost the
inviscid limit.

4. Discussion

Our main result is that the maximum growth rate of the perturbation is little
affected by viscous damping. Therefore, we confirm the instability condition
suggested in the introduction : that the growth rate of the perturbation be larger than
the decay rate of its cause (the finite-amplitude defect).

So far, we have considered a Couette flow that is unbounded in both directions. We
insist on this property in the cross-stream direction, because we want to avoid
boundaries which might play an active role in the instability, in order to focus only
on the effect of the profile defect. Note that this assumption is consistent with the
results, since the perturbation decays exponentially far from the defect.

But the situation is quite different in the direction of the flow, in which our
solutions are assumed to have a periodic behaviour. In most cases of interest, there
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is a maximum scale allowed in that direction. When performing numerical
simulations, such a finite scale is imposed by the computational domain. In a
rotating Couette flow, to which this analysis can be extended in the narrow gap limit,
the circular topology introduces the circumference as the limit length. The existence
of such a minimum wavenumber has a direct impact on the threshold of the finite-
amplitude instability, as we shall see next.

We assume that the maximal downstream size is 2nL and we call d the width of
the defect, as before. In the non-dimensional units introduced in §2, the minimum
wavenumber is then such that &, (2nL/d) = 2xn. To derive the instability condition,
we thus identify the critical wavenumber with k = k,;, = 4, where 4 = d/L measures
the relative defect width, and we introduce R,, the Reynolds number characterizing
the flow based on the maximum downstream scale L,

dU 12
RL - H’ 7 .
Two conditions must be satisfied. The first is that established by LK, namely that
the relative amplitude of the defect be larger than its width:

e> 4.

The second has just been recalled above; it expresses that the growth rate of the
perturbation, of order edU/dY, is larger than the decay rate of the defect, of order
of v/d?. This translates into: e4% 2 R;'. Thus the width 4 must lie in the interval

€R,)tsd<e, (12)
and this is possible only if € 2 R73. (13)

Refining that argument further and taking into account the decay of the amplitude
of the defect, Gill (1965) reached a similar formula, but with a logarithmic correction :

eloge 2 R,.

This correction would increase substantially the critical Reynolds number. However,
not only does the amplitude of the defect decrease, but its width increases with time,
an effect which was not considered by Gill. Indeed, a localized defect evolves with
time as ffexp(—Y2/4nt) according to the one-dimensional Orr-Sommerfeld
equation. Therefore, the amplitude of the defect varies as 7%, and its width as #. The
viscous dissipation thus decreases with time as ¢, which is faster than the ¢~ decline
of the growth rate. Consequently, it suffices that our criterion for instability (13) be
fulfilled at some initial time.

The necessary condition (13), which is independent of the width of the defect, thus
defines the threshold of the finite-amplitude instability for large Reynolds numbers.
Although the finite-amplitude perturbation we have considered is admittedly rather
specialized, we conjecture that the scaling (13) derived from it ought to be more
general.

A confirmation of this conjecture comes from a reinterpretation of our nonlinear
instability in terms of a ‘negative viscosity ’ instability. The energy balance is indeed
rather peculiar here: the large-scale perturbations, characterized by their small
wavenumber k ~ ¢, draw their energy from the small-scale velocity field associated
with the defect. Therefore, energy goes from small scale to large scale, as if through
the influence of a negative viscosity. As shown recently by Dubrulle & Frisch (1991),
such a phenomenon can actually occur for a wide class of two-dimensional shear flows
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periodic in both space and time and can be proved rigorously using a multi-scale
expansion. The influence of the basic velocity field on a given large-scale perturbation
is then modelled by an eddy-viscosity »' given by

¥

y— m— (14)

vt =

Here, v is the ordinary molecular viscosity and ¥ is the stream function of the basic
flow. The angular brackets represent the space—time average over the periodicities
(only space average if the basic flow is time-independent). From (14), it is obvious
that the (negative viscosity) instability sets in as soon as the condition

v < (PR (15)

is satisfied. We can translate this condition to the case studied in this paper if we
consider the defect as the small-scale flow, the large-scale flow being the Couette flow.
In that case, the relevant stream function has a characteristic lengthscale of the
order of the size of the defect and a characteristic amplitude of the order d*¢dU/dY.
We see then that the instability condition (12) derived for the Couette flow on a
phenomenological basis is just the translation of (15), which is exact for spatially
periodic shear flows. The condition 4 < e ensures that the characteristic scale of the
perturbation — which is the downstream scale since the basic flow is unbounded — is
larger than the characteristic scale of the defect (recall that e <1 is an implicit
condition of our asymptotic analysis of §2), and so that the scale separation is
fulfilled.

This confirmation of our instability condition (12) is reassuring. It remains to
check whether such prediction, based on a necessary condition, is in agreement with
the experiments. Surprisingly, very few results are available concerning instabilities
in plane Couette flow. To our knowledge, no experiments have been performed since
Reichardt’s in 1956. Using a configuration of aspect ratio H/L’ =} (H and L’ being
respectively the size in the cross-stream and in the downstream direction of his
apparatus), he found that turbulence occurred for Reynolds numbers (based on the
channel width) greater than about B, = 1500. He observed that the turbulent mean
flow organized itself in a slender S-shape. Assuming that the finite size of the
apparatus did not alter the dynamics of the instability (e.g. that no boundary layers
were present), let us estimate what would be, according to our analysis, the
perturbation amplitude required to trigger the finite-amplitude instability. Since
L/H = L’/2nH, we predict that at the critical downstream Reynolds number, B, =
(0.8)2R,, the amplitude of the perturbation should be at least ¢ 2 (R,)3=0.1,
implying a width of the defect of less than d = 0.08H. The velocity perturbation
would thus be of the order of ed/H = 0.008, thus about 0.8 % of the basic velocity.
This value seems quite plausible, if we interpret it as the level of the fluctuations
generated in the experiment, which unfortunately could not be determined by
Reichardt. Modern experiments on plane Couette flow would therefore be most
welcome, with direct measurements of the instability threshold as well as finer
descriptions of the structure of the turbulent regime.

Another way to obtain this information is to perform numerical simulations. A few
years ago, Orszag & Kells (1980) showed that a possible scenario leading to
turbulence in linearly stable flows was to combine a two-dimensional decaying mode
of finite amplitude with an infinitesimal, three-dimensional perturbation. In their
numerical simulation of plane Couette flow, they observed that the small
perturbation would grow exponentially above some critical Reynolds number, but
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the low spatial resolution prevented them from pursuing the calculation into a more
developed phase. They also noticed the important role of the inflexion points
occurring in the mean flow profile.

Here, we are suggesting a different scenario, namely that a one-dimensional finite-
amplitude perturbation of the mean flow should be sufficient to lead to instability.
Such instability will be two-dimensional at the beginning, but it is likely to become
three-dimensional after a finite time, as observed in mixing layers, both in the
laboratory and in numerical simulations (Lesieur ef al. 1988). We are currently
performing high-resolution computer simulations to investigate the nonlinear
evolution of such a finite-amplitude defect (Dubrulle 1991).

5. Conclusion

In this paper, we extended to viscous flows the result obtained by Lerner &
Knobloch (1988) in the inviscid limit. We formulated the instability conditions in the
(realistic) case where the flow has a finite extent, 2rL, in the downstream direction.
As expected, LK’s necessary condition also holds in the viscous regime, namely that
the relative maximum of vorticity characterizing the defect, €, be larger than its
relative width in the mean flow profile, d/L. In addition, we showed that this
magnitude ¢ must also be larger than R;3, R, being the Reynolds number of the mean
flow based on the downstream scale L. For a given ¢ satisfying these conditions,
€ > R7¥, the profile defect which leads to instability must have a relative width in
the interval

(eR,) 7t < % <e.

Such finite-amplitude instabilities of shearing flows may well be the cause of the
turbulence invoked in various geophysical and astrophysical situations to account
for enhanced transport. In particular, we believe that the ‘turbulent viscosity’ in
accretion discs, which is responsible for the conversion into heat of the gravitational
energy of the accreted matter, is due to such an instability arising in quasi-keplerian
rotation (Zahn 1984). Such instabilities are also likely to occur in differentially
rotating stars, where they will contribute to the vertical transport of chemicals and
of angular momentum (Zahn 1975).

Our special thanks goes to N. Baker whose help during the course of this work was
greatly appreciated. We thank L. Valdettaro and N. Dolez for valuable discussions.
Part of this work was conducted while B.D. was visiting the Astronomy Department
of Columbia University, and was supported by grant AFOSR 89-0012 of the US Air
Force. B.D. also acknowledges the support of a Amelia Earhart Fellowship provided
by the ZONTA organization.

Appendix
In this Appendix, we summarize the definitions and the properties of the Airy
functions which have been used in the course of this paper. A more complete account

can be found in the Appendix A of Drazin & Reid (1981), from which most of the
results below have been taken.
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F1aUurE 4. Sectors S, and 7, used in the Appendix.

Ficure 5. The paths of integration in the T-plane.

A.1. The Airy functions A,(2)

The Airy functions 4,(2) (j = 1,2, 3) are solution of Airy’s equation f” —zf = 0 defined
such that A4, is recessive (exponentially decaying) in the sector S, delineated in figure
4. Any two of these functions form a pair of linearly independent solutions of Airy’s
equation; they are related by the connection formula

S 42) =0, A1
and their Wronskians are j=1
Wd,, 4,) = WA, Ay) = W(d,,4,) = —1ini. (A2)
More specifically, A, and 4, are related to 4, through the rotation formulae
A,(2) = /34, (ze¥/3),  A,(2) = e7¥/34 (ze72"/3), (A 3)

A.2. The functions A,(z; p)

These functions have been introduced by Reid (1974) to deal with inner and outer
expansions. The functions 4,(z; p) are solutions of the differential equation

(AD+p—1)f=0, (A4)

where D = d/dz and A = D*—=z. For p = 0, one has A4,(z;0) = 4,(z). All we have to
know here are the following properties of the functions of degree 1:

A4,0051) =—1 (A 5)

19 FLM 231
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and Az, 1) = Jz Ay(t)dt, (A 6)

©f
where co; denotes a path of integration that tends to infinity in the sector S;.

A3. The functions By(z)

These functions are the solutions of the inhomogeneous Airy equation f”"—zf =1,
and the index j refers here to the sector 7; shown in figure 4 in which B, is well
balanced. They satisfy the same rotation formulae as the 4,(z), and are related to
them by the three connection formulae:

B, (2) = B,(2) = 2mid,y(2),
B,(2)—B,(2) = 2riA,(2), (A7)
By(2) =B, (2) = 2mid,(2).

A.4. Asymplotic expansions

We adopt the convention that phz lies in the range [—4m,%n]. In terms of the
auxiliary functions

Ay (z;p) =§ui(£1)Pz@PrDA eXp[ié %OJ (£1)a(p) 5“’], (A8)
§=0

where £ = 22! and the a,(p) are polynomials in p of degree 2s, with a,(p) = 1, the Ayz;
p) have the following asymptotic expansions for z> 1:

A,(z;p) ~ A_(z; p) (ze T UTy),
Ay(z;p) ~ 14.,(2; p) (e T, U TY),
[—A4_(z;p) (z€T),
| -id,(z:p) (zeTy).

In the other sectors, one has to use the rotation formulae (A 3). The asymptotic
expansion for the Bj(z) is

By(z) ~ (—1) 2 1=} —1)(=2)(=3)z*+...} (z€T)). (A 10)

The asymptotic expansion of the B, in the other sectors can also be found by the
rotation formulae (A 3).

(A9)
Ay(z3p) ~

A.5. Integral representations
The A,(z;p) and the B,(z) admit integral representation in the form

Az;p) = ﬁ fL t P exp (2t —3t3) dt,
i

(A 11)
By(z) = j exp (zt—3*)dt,
1

where the paths L; and I, are shown in figure 5. These representations can be used for
numerical computation.
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